ctst¶
Classifier two-sample tests (CTST) from binary classification metrics.
The classifier two-sample test broadly consists of three steps: (1) training a classifier, (2) scoring the two samples and (3) turning a test statistic into a p-value from these scores. This test statistic can be the performance metric of a binary classifier such as the (weighted) area under the receiver operating characteristic curve, the Matthews correlation coefficient, and the (balanced) accuracy. This module tackles step (3).
References
.. [1] Lopez-Paz, David, and Maxime Oquab. "Revisiting Classifier Two-Sample Tests." International Conference on Learning Representations. 2017.
.. [2] Friedman, Jerome. "On multivariate goodness-of-fit and two-sample testing." No. SLAC-PUB-10325. SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States), 2004.
.. [3] Kübler, Jonas M., et al. "Automl two-sample test." Advances in Neural Information Processing Systems 35 (2022): 15929-15941.
.. [4] Ciémençon, Stéphan, Marine Depecker, and Nicolas Vayatis. "AUC optimization and the two-sample problem." Proceedings of the 23rd International Conference on Neural Information Processing Systems. 2009.
.. [5] Hediger, Simon, Loris Michel, and Jeffrey Näf. "On the use of random forest for two-sample testing." Computational Statistics & Data Analysis 170 (2022): 107435.
.. [6] Kim, Ilmun, et al. "Classification accuracy as a proxy for two-sample testing." Annals of Statistics 49.1 (2021): 411-434.
CTST
dataclass
¶
Classifier two-sample test (CTST) using a binary classification metric.
This test compares scores (predictions) from two independent samples. Rejecting the null implies that scoring is not random and that the classifier is able to distinguish between the two samples.
Attributes:
| Name | Type | Description |
|---|---|---|
actual |
NDArray
|
Binary indicator for sample membership. |
predicted |
NDArray
|
Estimated (predicted) scores for corresponding samples in |
metric |
Callable
|
A callable that conforms to scikit-learn metric API. This function
must take two positional arguments e.g. |
n_resamples |
(int, optional)
|
Number of resampling iterations, by default 9999. |
rng |
(Generator, optional)
|
Random number generator, by default np.random.default_rng(). |
n_jobs |
(int, optional)
|
Number of parallel jobs, by default 1. |
batch |
(int or None, optional)
|
Batch size for parallel processing, by default None. |
alternative |
({'less', 'greater', 'two-sided'}, optional)
|
Defines the alternative hypothesis. Default is 'two-sided'. |
Notes
The null distribution is based on permutations.
See scipy.stats.permutation_test for more details.
Examples:
>>> import numpy as np
>>> from sklearn.metrics import matthews_corrcoef, roc_auc_score
>>> from samesame.ctst import CTST
>>> actual = np.array([0, 1, 1, 0])
>>> scores = np.array([0.2, 0.8, 0.6, 0.4])
>>> ctst_mcc = CTST(actual, scores, metric=matthews_corrcoef)
>>> ctst_auc = CTST(actual, scores, metric=roc_auc_score)
>>> print(ctst_mcc.pvalue)
>>> print(ctst_auc.pvalue)
>>> ctst_ = CTST.from_samples(scores, scores, metric=roc_auc_score)
>>> isinstance(ctst_, CTST)
True
Source code in src/samesame/ctst.py
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 | |
null
cached
property
¶
Compute the null distribution of the test statistic.
Notes
The result is cached to avoid (expensive) recomputation since the null distribution requires permutations.
pvalue
cached
property
¶
Compute the p-value using permutations.
Notes
The result is cached to avoid (expensive) recomputation.
statistic
cached
property
¶
Compute the observed test statistic.
Returns:
| Type | Description |
|---|---|
float
|
The test statistic. |
Notes
The result is cached to avoid (expensive) recomputation.
__post_init__()
¶
Validate inputs.
Source code in src/samesame/ctst.py
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 | |
from_samples(first_sample, second_sample, metric, n_resamples=9999, rng=np.random.default_rng(), n_jobs=1, batch=None, alternative='two-sided')
classmethod
¶
Create a CTST instance from two samples.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
first_sample
|
NDArray
|
First sample of scores. These can be binary or continuous. |
required |
second_sample
|
NDArray
|
Second sample of scores. These can be binary or continuous. |
required |
Returns:
| Type | Description |
|---|---|
CTST
|
An instance of the CTST class. |
Source code in src/samesame/ctst.py
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 | |